Solving the fixed gravimetric boundary value problem by the finite element method using mapped infinite elements.
نویسندگان
چکیده
Abstract The numerical approach for solving the fixed gravimetric boundary value problem (FGBVP) based on finite element method (FEM) with mapped infinite elements is developed and implemented. In this approach, 3D semi-infinite domain outside Earth bounded by triangular discretization of whole Earth’s surface extends to infinity. Then FGBVP consists Laplace equation unknown disturbing potential which holds in domain, oblique derivative condition (BC) given directly at computational nodes surface, regularity way, it differs from previous FEM approaches, since solution not Dirichlet BC some part domain. As a method, prisms has been derived experiments, first, convergence proposed scheme exact tested. Afterwards, study focused reconstruction harmonic function (EGM2008) above topography. Here, special able fulfil conditions that arise correct geometrical properties elements, suitable parallel computing obtained solutions as well lie approximately altitude GOCE satellite mission have
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولFinite element method for solving geodetic boundary value problems
The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in t...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملB-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems
In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geosciences
سال: 2023
ISSN: ['1573-1499', '1420-0597']
DOI: https://doi.org/10.1007/s10596-023-10224-3